Eckshtain-Levi, N. ; Shkedy, D. ; Gershovits, M. ; Da Silva, G. M. ; Tamir-Ariel, D. ; Walcott, R. ; Pupko, T. ; Burdman, S. .
Insights From The Genome Sequence Of Acidovorax Citrulli M6, A Group I Strain Of The Causal Agent Of Bacterial Fruit Blotch Of Cucurbits.
Frontiers in Microbiology 2016,
7, 430.
Publisher's VersionAbstractAcidovorax citrulli is a seedborne bacterium that causes bacterial fruit blotch of cucurbit plants including watermelon and melon. A. citrulli strains can be divided into two major groups based on DNA fingerprint analyses and biochemical properties. Group I strains have been generally isolated from non-watermelon cucurbits, while group II strains are closely associated with watermelon. In the present study, we report the genome sequence of M6, a group I model A. citrulli strain, isolated from melon. We used comparative genome analysis to investigate differences between the genome of strain M6 and the genome of the group II model strain AAC00-1. The draft genome sequence of A. citrulli M6 harbors 139 contigs, with an overall approximate size of 4.85 Mb. The genome of M6 is ∼500 Kb shorter than that of strain AAC00-1. Comparative analysis revealed that this size difference is mainly explained by eight fragments, ranging from ∼35–120 Kb and distributed throughout the AAC00-1 genome, which are absent in the M6 genome. In agreement with this finding, while AAC00-1 was found to possess 532 open reading frames (ORFs) that are absent in strain M6, only 123 ORFs in M6 were absent in AAC00-1. Most of these M6 ORFs are hypothetical proteins and most of them were also detected in two group I strains that were recently sequenced, tw6 and pslb65. Further analyses by PCR assays and coverage analyses with other A. citrulli strains support the notion that some of these fragments or significant portions of them are discriminative between groups I and II strains of A. citrulli. Moreover, GC content, effective number of codon values and cluster of orthologs’ analyses indicate that these fragments were introduced into group II strains by horizontal gene transfer events. Our study reports the genome sequence of a model group I strain of A. citrulli, one of the most important pathogens of cucurbits. It also provides the first comprehensive comparison at the genomic level between the two major groups of strains of this pathogen.
Zimerman-Lax, N. ; Shenker, M. ; Tamir-Ariel, D. ; Perl-Treves, R. ; Burdman, S. .
Effects Of Nitrogen Nutrition On Disease Development Caused By Acidovorax Citrulli On Melon Foliage.
2016,
145, 125 - 137.
Publisher's VersionAbstractBacterial fruit blotch (BFB) of cucurbits, caused by the seed-borne bacterium Acidovorax citrulli, is a destructive disease that threatens the melon and watermelon industries worldwide. The available means to manage the disease are very limited and there are no reliable sources of BFB resistance. Mineral nutrition has marked effects on plant diseases. To the best of our knowledge, no studies reporting effects of mineral nutrition on BFB severity have been reported to date. In the present study we assessed the influence of nitrogen nutrition on BFB severity and A. citrulli establishment in the foliage of melon plants under greenhouse conditions. Our results show that nitrogen fertilization, based on nitrate only, led to reduced disease severity and bacterial numbers in melon leaves, as compared with two combinations of nitrate and ammonium. No consistent effect of nitrogen nutrition on expression of several plant defense-associated transcripts was found, except for hydroperoxide lyase (HPL), which upon inoculation was repressed to a greater extent under the “nitrate-only” nitrogen regime compared with combined nitrate and ammonium. Reducing BFB severity and A. citrulli establishment in the plant foliage are of particular importance since establishment of the pathogen during the growing season is assumed to increase the incidence of fruit infection, leading to serious yield losses. Further research is needed to elucidate the mechanisms by which nitrogen nutrition influences BFB development, and to assess the effects of nitrogen as well as other minerals on the disease under field conditions.
Joshi, J. R. ; Burdman, S. ; Lipsky, A. ; Yariv, S. ; Yedidia, I. .
Plant Phenolic Acids Affect The Virulence Of Pectobacterium Aroidearum And P. Carotovorum Ssp. Brasiliense Via Quorum Sensing Regulation.
Molecular Plant PathologyMolecular Plant PathologyMolecular Plant Pathology 2016,
17, 487 - 500.
Publisher's VersionAbstractSummary Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P.?aroidearum and P.?carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(?-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery.
Joshi, J. R. ; Khazanov, N. ; Senderowitz, H. ; Burdman, S. ; Lipsky, A. ; Yedidia, I. .
Plant Phenolic Volatiles Inhibit Quorum Sensing In Pectobacteria And Reduce Their Virulence By Potential Binding To Expi And Expr Proteins.
2016,
6, 38126.
Publisher's VersionAbstractQuorum sensing (QS) is a population density-dependent regulatory system in bacteria that couples gene expression to cell density through accumulation of diffusible signaling molecules. Pectobacteria are causal agents of soft rot disease in a range of economically important crops. They rely on QS to coordinate their main virulence factor, production of plant cell wall degrading enzymes (PCWDEs). Plants have evolved an array of antimicrobial compounds to anticipate and cope with pathogens, of which essential oils (EOs) are widely recognized. Here, volatile EOs, carvacrol and eugenol, were shown to specifically interfere with QS, the master regulator of virulence in pectobacteria, resulting in strong inhibition of QS genes, biofilm formation and PCWDEs, thereby leading to impaired infection. Accumulation of the signal molecule N-acylhomoserine lactone declined upon treatment with EOs, suggesting direct interaction of EOs with either homoserine lactone synthase (ExpI) or with the regulatory protein (ExpR). Homology models of both proteins were constructed and docking simulations were performed to test the above hypotheses. The resulting binding modes and docking scores of carvacrol and eugenol support potential binding to ExpI/ExpR, with stronger interactions than previously known inhibitors of both proteins. The results demonstrate the potential involvement of phytochemicals in the control of Pectobacterium.