Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Publications

2017
Sagi, D. ; Marcos-Hadad, E. ; Bari, V. K. ; Resnick, M. A. ; Covo, S. . Increased Loh Due To Defective Sister Chromatid Cohesion Is Due Primarily To Chromosomal Aneuploidy And Not Recombination. G3: Genes, Genomes, Genetics 2017, 7, 3305–3315. Publisher's VersionAbstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Omer, S. ; Lavi, B. ; Mieczkowski, P. A. ; Covo, S. ; Hazkani-Covo, E. . Whole Genome Sequence Analysis Of Mutations Accumulated In Rad27Δ Yeast Strains With Defects In The Processing Of Okazaki Fragments Indicates Template-Switching Events. G3: Genes, Genomes, Genetics 2017, 7, 3775–3787. Publisher's VersionAbstract
Okazaki fragments that are formed during lagging strand DNA synthesis include an initiating primer consisting of both RNA and DNA. The RNA fragment must be removed before the fragments are joined. In Saccharomyces cerevisiae, a key player in this process is the structure-specific flap endonuclease, Rad27p (human homolog FEN1). To obtain a genomic view of the mutational consequence of loss of RAD27, a S. cerevisiae rad27Δ strain was subcultured for 25 generations and sequenced using Illumina paired-end sequencing. Out of the 455 changes observed in 10 colonies isolated the two most common types of events were insertions or deletions (INDELs) in simple sequence repeats (SSRs) and INDELs mediated by short direct repeats. Surprisingly, we also detected a previously neglected class of 21 template-switching events. These events were presumably generated by quasi-palindrome to palindrome correction, as well as palindrome elongation. The formation of these events is best explained by folding back of the stalled nascent strand and resumption of DNA synthesis using the same nascent strand as a template. Evidence of quasi-palindrome to palindrome correction that could be generated by template switching appears also in yeast genome evolution. Out of the 455 events, 55 events appeared in multiple isolates; further analysis indicates that these loci are mutational hotspots. Since Rad27 acts on the lagging strand when the leading strand should not contain any gaps, we propose a mechanism favoring intramolecular strand switching over an intermolecular mechanism. We note that our results open new ways of understanding template switching that occurs during genome instability and evolution.
Herold, I. ; Yarden, O. . Regulation Of Neurospora Crassa Cell Wall Remodeling Via The Cot-1 Pathway Is Mediated By Gul-1. Curr Genet 2017, 63, 145-159.Abstract
Impairment of the Neurospora crassa Nuclear DBF2-related kinase-encoding gene cot-1 results in pleiotropic effects, including abnormally thick hyphal cell walls and septa. An increase in the transcript abundance of genes encoding chitin and glucan synthases and the chitinase gh18-5, but not the cell wall integrity pathway transcription factor rlm-1, accompany the phenotypic changes observed. Deletion of chs-5 or chs-7 in a cot-1 background results in a reduction of hyperbranching frequency characteristic of the cot-1 parent. gul-1 (a homologue of the yeast SSD1 gene) encodes a translational regulator and has been shown to partially suppress cot-1. We demonstrate that the high expression levels of the cell wall remodeling genes analyzed is curbed, and reaches near wild type levels, when gul-1 is inactivated. This is accompanied by morphological changes that include reduced cell wall thickness and restoration of normal chitin levels. We conclude that gul-1 is a mediator of cell wall remodeling within the cot-1 pathway.
Simkovitch, R. ; Gajst, O. ; Zelinger, E. ; Yarden, O. ; Huppert, D. . Irradiation By Blue Light In The Presence Of A Photoacid Confers Changes To Colony Morphology Of The Plant Pathogen Colletotrichum Gloeosporioides. Journal of Photochemistry and Photobiology B: Biology 2017, 174, 1 - 9. Publisher's VersionAbstract
We used the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonate (HPTS) that converts blue photons to acidic protons in water, with an efficiency of close to 100%, and determined that this treatment conferred changes to colony morphology of the plant pathogen Colletotrichum gloeosporioides. The time elapsed until hyphal collapse is noticed depends on both the laser intensity in mW/cm2, and the concentration of HPTS in the Agar hydrogel. The time elapsed until hyphal collapse is noticed varies by only ±8% at HPTS concentrations of 500μM and at lower concentrations of HPTS the variance increases as the inverse of the concentration. We found that the effect on C. gloeosporioides was photoacid concentration and irradiation dose dependent. In the presence of 500μM of HPTS within the agar hydrogel-based medium, hyphae collapsed after 37±3.5min of irradiation at 405nm at an intensity of 25mW/cm2. We propose two mechanisms for such photo-alteration of C. gloeosporioides. One is based on the pH drop in the extracellular environment by the photo-protolytic process that the photoacid molecule undergoes. The second mechanism is based on an intracellular mechanism in which there is an uptake of HPTS into the interior of the fungus. We suggest that both mechanisms for photo-alteration which we found in this study may occur in plants during fungal infection.
Shomin-Levi, H. ; Yarden, O. . The Pp2A Regulatory Subunits Rgb1 And B56 Are Required For Proper Growth And Development And Interact With The Ndr Kinase Cot1. Front Microbiol 2017, 8, 1694.Abstract
COT1 is the founding member of the highly conserved nuclear Dbf2-related (NDR) Ser/Thr kinase family and plays a role in the regulation of polar growth and development in and other fungi. Changes in COT1 phosphorylation state have been shown to affect hyphal elongation, branching, and conidiation. The function of NDR protein kinases has been shown to be regulated by type 2A protein phosphatases (PP2As). PP2As are heterotrimers comprised of a catalytic and scaffolding protein along with an interchangeable regulatory subunit involved in determining substrate specificity. Inactivation of the PP2A regulatory subunits and conferred severe hyphal growth defects. Partial suppression of defects observed in the strain (but not in the Δ mutant) was observed in phosphomimetic mutants, demonstrating that altering COT1 phosphorylation state can bypass, at least in part, the requirement of a functional RGB1 subunit. The functional fusion proteins RGB1::GFP and B56::GFP predominantly localized to hyphal tips and septa, respectively, indicating that their primary activity is in different cellular locations. COT1 protein forms exhibited a hyperphosphorylated gel migration pattern in an mutant background, similar to that observed when the fungus was cultured in the presence of the PP2A inhibitor cantharidin. COT1 was hypophosphorylated in a Δ mutant background, suggesting that this regulatory subunit may be involved in determining COT1 phosphorylation state, yet in an indirect manner. Reciprocal co-immunoprecipitation analyses, using tagged COT1, PPH1, RGB1, and B56 subunits established that these proteins physically interact. Taken together, our data determine the presence of a functional and physical link between PP2A and COT1 and show that two of the PP2A regulatory subunits interact with the kinase and determine COT1 phosphorylation state.
Polturak, G. ; Grossman, N. ; Vela-Corcia, D. ; Dong, Y. ; Nudel, A. ; Pliner, M. ; Levy, M. ; Rogachev, I. ; Aharoni, A. . Engineered Gray Mold Resistance, Antioxidant Capacity, And Pigmentation In Betalain-Producing Crops And Ornamentals. Proceedings of the National Academy of Sciences 2017, 114, 9062–9067. Publisher's VersionAbstract
In plants, three major classes of pigments are generally responsible for colors seen in fruits and flowers: anthocyanins, carotenoids, and betalains. Betalains are red-violet and yellow plant pigments that have been reported to possess strong antioxidant and health-promoting properties, including anticancer, antiinflammatory, and antidiabetic activity. Here, heterologous betalain production was achieved for the first time in three major food crops: tomato, potato, and eggplant. Remarkably, betalain production in tobacco resulted in significantly enhanced resistance toward gray mold (Botrytis cinerea), a plant pathogen responsible for major crop losses. Considering the significant characteristics of these molecules, heterologous betalain production now offers exciting opportunities for creating new value for consumers, producers, and suppliers of food crops and ornamental plants.Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors. Furthermore, betalain-producing tobacco plants exhibited significantly increased resistance toward gray mold (Botrytis cinerea), a pathogen responsible for major losses in agricultural produce. Heterologous production of betalains is thus anticipated to enable biofortification of essential foods, development of new ornamental varieties, and innovative sources for commercial betalain production, as well as utilization of these pigments in crop protection.
Kashtan, N. ; Roggensack, S. E. ; Berta-Thompson, J. W. ; Grinberg, M. ; Stepanauskas, R. ; Chisholm, S. W. . Fundamental Differences In Diversity And Genomic Population Structure Between Atlantic And Pacific Prochlorococcus. ISME J 2017, 11, 1997-2011.Abstract
The Atlantic and Pacific Oceans represent different biogeochemical regimes in which the abundant marine cyanobacterium Prochlorococcus thrives. We have shown that Prochlorococcus populations in the Atlantic are composed of hundreds of genomically, and likely ecologically, distinct coexisting subpopulations with distinct genomic backbones. Here we ask if differences in the ecology and selection pressures between the Atlantic and Pacific are reflected in the diversity and genomic composition of their indigenous Prochlorococcus populations. We applied large-scale single-cell genomics and compared the cell-by-cell genomic composition of wild populations of co-occurring cells from samples from Station ALOHA off Hawaii, and from Bermuda Atlantic Time Series Station off Bermuda. We reveal fundamental differences in diversity and genomic structure of populations between the sites. The Pacific populations are more diverse than those in the Atlantic, composed of significantly more coexisting subpopulations and lacking dominant subpopulations. Prochlorococcus from the two sites seem to be composed of mostly non-overlapping distinct sets of subpopulations with different genomic backbones-likely reflecting different sets of ocean-specific micro-niches. Furthermore, phylogenetically closely related strains carry ocean-associated nutrient acquisition genes likely reflecting differences in major selection pressures between the oceans. This differential selection, along with geographic separation, clearly has a significant role in shaping these populations.
Habtom, H. ; Demanèche, S. ; Dawson, L. ; Azulay, C. ; Matan, O. ; Robe, P. ; Gafny, R. ; Simonet, P. ; Jurkevitch, E. ; Pasternak, Z. . Soil Characterisation By Bacterial Community Analysis For Forensic Applications: A Quantitative Comparison Of Environmental Technologies. Forensic Sci Int Genet 2017, 26, 21-29.Abstract
The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool.
Dattner, I. ; Miller, E. ; Petrenko, M. ; Kadouri, D. E. ; Jurkevitch, E. ; Huppert, A. . Modelling And Parameter Inference Of Predator&\#X2013;Prey Dynamics In Heterogeneous Environments Using The Direct Integral Approach. Journal of The Royal Society Interface 2017, 14, 20160525. Publisher's VersionAbstract
Most bacterial habitats are topographically complex in the micro scale. Important examples include the gastrointestinal and tracheal tracts, and the soil. Although there are myriad theoretical studies that explore the role of spatial structures on antagonistic interactions (predation, competition) among animals, there are many fewer experimental studies that have explored, validated and quantified their predictions. In this study, we experimentally monitored the temporal dynamic of the predatory bacterium Bdellovibrio bacteriovorus, and its prey, the bacterium Burkholderia stabilis in a structured habitat consisting of sand under various regimes of wetness. We constructed a dynamic model, and estimated its parameters by further developing the direct integral method, a novel estimation procedure that exploits the separability of the states and parameters in the model. We also verified that one of our parameter estimates was consistent with its known, directly measured value from the literature. The ability of the model to fit the data combined with realistic parameter estimates indicate that bacterial predation in the sand can be described by a relatively simple model, and stress the importance of prey refuge on predation dynamics in heterogeneous environments.
Jurkevitch, E. ; Jacquet, S. . Bdellovibrio And Like Organisms: Outstanding Predators!. Med Sci (Paris) 2017, 33, 519-527.Abstract
Obligate predatory bacteria, i.e. bacteria requiring a Gram negative prey cell in order to complete their cell cycle, belong to the polyphyletic group referred to as the Bdellovibrio And Like Organisms (BALO). Predatory interactions between bacteria are complex, yet their dynamics and impact on bacterial communities in the environment are becoming better understood. BALO have unique life cycles: they grow epibiotically with the predator remaining attached to the prey's envelope, dividing in a binary manner or periplasmically, i.e. by penetrating the prey's periplasm to generate a number of progeny cells. The periplasmic life cycle includes unique gene and protein patterns and unique signaling features. These ecological and cellular features, along with applications of the BALO in the medical, agricultural and environmental fields are surveyed.
Ben-Yosef, M. ; Zaada, D. S. Y. ; Dudaniec, R. Y. ; Pasternak, Z. ; Jurkevitch, E. ; Smith, R. J. ; Causton, C. E. ; Lincango, M. P. ; Tobe, S. S. ; Mitchell, J. G. ; et al. Host-Specific Associations Affect The Microbiome Of Philornis Downsi, An Introduced Parasite To The Galápagos Islands. Mol Ecol 2017, 26, 4644-4656.Abstract
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host-parasite co-evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host-related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.
Johnke, J. ; Baron, M. ; de Leeuw, M. ; Kushmaro, A. ; Jurkevitch, E. ; Harms, H. ; Chatzinotas, A. . A Generalist Protist Predator Enables Coexistence In Multitrophic Predator-Prey Systems Containing A Phage And The Bacterial Predator Bdellovibrio. Frontiers in Ecology and Evolution 2017, 5, 124. Publisher's VersionAbstract
Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists), predatory bacteria (semi-specialists), and phages (specialists)—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.
Avidan, O. ; Petrenko, M. ; Becker, R. ; Beck, S. ; Linscheid, M. ; Pietrokovski, S. ; Jurkevitch, E. . Identification And Characterization Of Differentially-Regulated Type Ivb Pilin Genes Necessary For Predation In Obligate Bacterial Predators. Sci Rep 2017, 7, 1013.Abstract
Bdellovibrio bacteriovorus is an obligate predator of bacteria that grows and divides within the periplasm of its prey. Functions involved in the early steps of predation have been identified and characterized, but mediators of prey invasion are still poorly detailed. By combining omics data available for Bdellovibrio and like organisms (BALO's), we identified 43 genes expressed in B. bacteriovorus during the early interaction with prey. These included genes in a tight adherence (TAD) operon encoding for two type IVb fimbriae-like pilin proteins (flp1 and flp2), and their processing and export machinery. Two additional flp genes (flp3 and flp4) were computationally identified at other locations along the chromosome, defining the largest and most diverse type IVb complement known in bacteria to date. Only flp1, flp2 and flp4 were expressed; their respective gene knock-outs resulted in a complete loss of the predatory ability without losing the ability to adhere to prey cells. Additionally, we further demonstrate differential regulation of the flp genes as the TAD operon of BALOs with different predatory strategies is controlled by a flagellar sigma factor FliA, while flp4 is not. Finally, we show that FliA, a known flagellar transcriptional regulator in other bacteria, is an essential Bdellovibrio gene.
Besserglick, J. ; Olshvang, E. ; Szebesczyk, A. ; Englander, J. ; Levinson, D. ; Hadar, Y. ; Gumienna-Kontecka, E. ; Shanzer, A. . Ferrichrome Has Found Its Match: Biomimetic Analogues With Diversified Activity Map Discrete Microbial Targets. Chemistry 2017, 23, 13181-13191.Abstract
Siderophores provide an established platform for studying molecular recognition principles in biological systems. Herein, the preparation of ferrichrome (FC) biomimetic analogues varying in length and polarity of the amino acid chain separating between the tripodal scaffold and the pendent Fe chelating hydroxamic acid groups was reported. Spectroscopic and potentiometric titrations determined their iron affinity to be within the range of efficient chelators. Microbial growth promotion and iron uptake studies were conducted on E. coli, P. putida and U. maydis. A wide range of siderophore activity was observed in the current series: from a rare case of a species-specific growth promotor in P. putida to an analogue matching FC in cross-phylum activity and uptake pathway. A fluorescent conjugate of the broad-range analogue visualized siderophore destination in bacteria (periplasmic space) vs. fungi (cytosol) mapping new therapeutic targets. Quantum dots (QDs) decorated with the most potent FC analogue provided a tool for immobilization of FC-recognizing bacteria. Bacterial clusters formed around QDs may provide a platform for their selection and concentration.
Nimri, L. ; Spivak, O. ; Tal, D. ; Schälling, D. ; Peri, I. ; Graeve, L. ; Salame, T. M. ; Yarden, O. ; Hadar, Y. ; Schwartz, B. . A Recombinant Fungal Compound Induces Anti-Proliferative And Pro-Apoptotic Effects On Colon Cancer Cells. Oncotarget 2017, 8, 28854-28864.Abstract
Finding intracellular pathways and molecules that can prevent the proliferation of colon cancer cells can provide significant bases for developing treatments for this disease. Ostreolysin (Oly) is a protein found in the mushroom Pleurotus ostreatus, and we have produced a recombinant version of this protein (rOly).We measured the viability of several colon cancer cells treated with rOly. Xenografts and syngeneic colon cancer cells were injected into in vivo mouse models, which were then treated with this recombinant protein.rOly treatment induced a significant reduction in viability of human and mouse colon cancer cells. In contrast, there was no reduction in the viability of normal epithelial cells from the small intestine. In the search for cellular targets of rOly, we showed that it enhances the anti-proliferative activity of drugs targeting cellular tubulin. This was accompanied by a reduction in the weight and volume of tumours in mice injected with rOly as compared to their respective control mice in two in vivo models.Our results advance the functional understanding of rOly as a potential anti-cancer treatment associated with pro-apoptotic activities preferentially targeting colon cancer cells.
Frenkel, C. ; Hadar, Y. ; Chen, Y. . Laboratory-Scale Production And Purification Of The Iron Chelator Rhizoferrin: A Novel Fe Supplier To Plants. Israel Journal of Plant Sciences 2017, 64. Publisher's Version
Avni, S. ; Ezove, N. ; Hanani, H. ; Yadid, I. ; Karpovsky, M. ; Hayby, H. ; Gover, O. ; Hadar, Y. ; Schwartz, B. ; Danay, O. . Olive Mill Waste Enhances Α-Glucan Content In The Edible Mushroom Pleurotus Eryngii. Int J Mol Sci 2017, 18.Abstract
Mushroom polysaccharides are edible polymers that have numerous reported biological functions; the most common effects are attributed to β-glucans. In recent years, it became apparent that the less abundant α-glucans also possess potent effects in various health conditions. Here we explore several species for their total, β and α-glucan content. was found to have the highest total glucan concentrations and the highest α-glucans proportion. We also found that the stalks (stipe) of the fruit body contained higher glucan content then the caps (pileus). Since mushrooms respond markedly to changes in environmental and growth conditions, we developed cultivation methods aiming to increase the levels of α and β-glucans. Using olive mill solid waste (OMSW) from three-phase olive mills in the cultivation substrate. We were able to enrich the levels mainly of α-glucans. Maximal total glucan concentrations were enhanced up to twice when the growth substrate contained 80% of OMSW compared to no OMSW. Taking together this study demonstrate that can serve as a potential rich source of glucans for nutritional and medicinal applications and that glucan content in mushroom fruiting bodies can be further enriched by applying OMSW into the cultivation substrate.
Oren, T. ; Nimri, L. ; Yehuda-Shnaidman, E. ; Staikin, K. ; Hadar, Y. ; Friedler, A. ; Amartely, H. ; Slutzki, M. ; Di Pizio, A. ; Niv, M. Y. ; et al. Recombinant Ostreolysin Induces Brown Fat-Like Phenotype In Hib-1B Cells. Mol Nutr Food Res 2017, 61.Abstract
SCOPE: Brown adipose tissue (BAT) is the main regulator of thermogenesis by increasing energy expenditure through the uncoupling of oxidative metabolism from ATP synthesis. There is a growing body of evidence for BAT being the key responsible organ in combating obesity and its related disorders. Herein we propose the fungal protein ostreolysin (Oly), which has been previously shown to bind to cholesterol-enriched raft-like membrane domains (lipid rafts) of mammalian cells, as a suitable candidate for interaction with brown preadipocytes. The aim of the present study was therefore to characterize the mechanism by which a recombinant version of ostreolysin (rOly) induces brown adipocyte differentiation. METHODS AND RESULTS: Primary isolated brown preadipocytes or HIB-1B brown preadipocyte cells were treated with rOly and the effects on morphology, lipid accumulation, respiration rate, and associated gene and protein expression were measured. rOly upregulated mRNA and protein levels of factors related to brown adipocyte differentiation, induced lipid droplet formation, and increased cellular respiration rate due to expression of uncoupling protein 1. rOly also upregulated β-tubulin expression, and therefore microtubules might be involved in its mechanism of action. CONCLUSION: rOly promotes brown adipocyte differentiation, suggesting a new mechanism for rOly's contribution to the battle against obesity.
Yoav, S. ; Barak, Y. ; Shamshoum, M. ; Borovok, I. ; Lamed, R. ; Dassa, B. ; Hadar, Y. ; Morag, E. ; Bayer, E. A. . How Does Cellulosome Composition Influence Deconstruction Of Lignocellulosic Substrates In Clostridium (Ruminiclostridium) Thermocellum Dsm 1313?. Biotechnology for biofuels 2017, 10, 222 - 222. Publisher's VersionAbstract
BACKGROUND: Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium (Ruminiclostridium) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. RESULTS: Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. CONCLUSION: The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum-based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.
Friedman, J. ; Gore, J. . Ecological Systems Biology: The Dynamics Of Interacting Populations. Current Opinion in Systems Biology 2017, 1, 114 - 121. Publisher's VersionAbstract
Ecological systems biology integrates theory and experiments in simple laboratory systems to study how interactions between individuals determine the emergent properties of complex biological communities. This approach reveals parallels between ecological dynamics that result from interactions between populations, and evolutionary dynamics which result from analogous interactions within a population. Tractable microbial systems enable systematic testing of theoretical predications, and identification of novel principles. Notable examples include using a cooperatively growing yeast population to detect theoretically predicted early-warning indicators preceding sudden population collapse, validating predicted spatial expansion patterns using two yeast strains which exchange essential metabolites, and the recent realization that coevolution of predators and prey qualitatively alters the oscillations that are observed in a rotifer-algae system.