Citation:
Abstract:
In plants, three major classes of pigments are generally responsible for colors seen in fruits and flowers: anthocyanins, carotenoids, and betalains. Betalains are red-violet and yellow plant pigments that have been reported to possess strong antioxidant and health-promoting properties, including anticancer, antiinflammatory, and antidiabetic activity. Here, heterologous betalain production was achieved for the first time in three major food crops: tomato, potato, and eggplant. Remarkably, betalain production in tobacco resulted in significantly enhanced resistance toward gray mold (Botrytis cinerea), a plant pathogen responsible for major crop losses. Considering the significant characteristics of these molecules, heterologous betalain production now offers exciting opportunities for creating new value for consumers, producers, and suppliers of food crops and ornamental plants.Betalains are tyrosine-derived red-violet and yellow plant pigments known for their antioxidant activity, health-promoting properties, and wide use as food colorants and dietary supplements. By coexpressing three genes of the recently elucidated betalain biosynthetic pathway, we demonstrate the heterologous production of these pigments in a variety of plants, including three major food crops: tomato, potato, and eggplant, and the economically important ornamental petunia. Combinatorial expression of betalain-related genes also allowed the engineering of tobacco plants and cell cultures to produce a palette of unique colors. Furthermore, betalain-producing tobacco plants exhibited significantly increased resistance toward gray mold (Botrytis cinerea), a pathogen responsible for major losses in agricultural produce. Heterologous production of betalains is thus anticipated to enable biofortification of essential foods, development of new ornamental varieties, and innovative sources for commercial betalain production, as well as utilization of these pigments in crop protection.