Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Publications

2019
Bauer, T. S. ; Menagen, B. ; Avnir, D. ; Hayouka, Z. . Random Peptide Mixtures Entrapped Within A Copper-Cuprite Matrix: New Antimicrobial Agent Against Methicillin-Resistant Staphylococcus Aureus. Scientific reports 2019, 9, 11215. Publisher's VersionAbstract
The emergence of global antibiotic resistance necessitates the urgent need to develop new and effective antimicrobial agents. Combination of two antimicrobial agents can potentially improve antimicrobial potency and mitigate the development of resistance. Therefore, we have utilized metal molecular doping methodology whereby antimicrobial random peptides mixture (RPMs) are entrapped in a bactericidal copper metal matrix. The copper/RPM composite exhibits greater antimicrobial activity toward methicillin-resistant Staphylococcus aureus (MRSA) than either copper or RPMs alone. Our findings indicate that this bactericidal antimicrobial biomaterial could be utilized to efficiently eradicate antibiotic-resistant pathogenic bacteria for health, agricultural and environmental applications.
Kokou, F. ; Sasson, G. ; Friedman, J. ; Eyal, S. ; Ovadia, O. ; Harpaz, S. ; Cnaani, A. ; Mizrahi, I. . Core Gut Microbial Communities Are Maintained By Beneficial Interactions And Strain Variability In Fish. Nature Microbiology 2019, 4, 2456-2465. Publisher's VersionAbstract
The term core microbiome describes microbes that are consistently present in a particular habitat. If the conditions in that habitat are highly variable, core microbes may also be considered to be ecological generalists. However, little is known about whether metabolic competition and microbial interactions influence the ability of some microbes to persist in the core microbiome while others cannot. We investigated microbial communities at three sites in the guts of European seabass under four dietary conditions. We identified generalist core microbial populations in each gut site that are shared across fish, present under multiple diets and persistent over time. We found that core microbes tend to show synergistic growth in co-culture, and low levels of predicted and validated metabolic competition. Within core microbial species, we found high levels of intraspecific variability and strain-specific habitat specialization. Thus, both intraspecific variability and interspecific facilitation may contribute to the ecological stability of the animal core microbiome. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.
Kehe, J. ; Kulesa, A. ; Ortiz, A. ; Ackerman, C. M. ; Thakku, S. G. ; Sellers, D. ; Kuehn, S. ; Gore, J. ; Friedman, J. ; Blainey, P. C. . Massively Parallel Screening Of Synthetic Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America 2019, 116, 12804-12809. Publisher's VersionAbstract
Microbial communities have numerous potential applications in biotechnology, agriculture, and medicine. Nevertheless, the limited accuracy with which we can predict interspecies interactions and environmental dependencies hinders efforts to rationally engineer beneficial consortia. Empirical screening is a complementary approach wherein synthetic communities are combinatorially constructed and assayed in high throughput. However, assembling many combinations of microbes is logistically complex and difficult to achieve on a timescale commensurate with microbial growth. Here, we introduce the kChip, a droplets-based platform that performs rapid, massively parallel, bottom-up construction and screening of synthetic microbial communities. We first show that the kChip enables phenotypic characterization of microbes across environmental conditions. Next, in a screen of ∼100,000 multispecies communities comprising up to 19 soil isolates, we identified sets that promote the growth of the model plant symbiont Herbaspirillum frisingense in a manner robust to carbon source variation and the presence of additional species. Broadly, kChip screening can identify multispecies consortia possessing any optically assayable function, including facilitation of biocontrol agents, suppression of pathogens, degradation of recalcitrant substrates, and robustness of these functions to perturbation, with many applications across basic and applied microbial ecology. © 2019 National Academy of Sciences. All rights reserved.
Abreu, C. I. ; Friedman, J. ; Andersen Woltz, V. L. ; Gore, J. . Mortality Causes Universal Changes In Microbial Community Composition. Nature Communications 2019, 10. Publisher's VersionAbstract
All organisms are sensitive to the abiotic environment, and a deteriorating environment can cause extinction. However, survival in a multispecies community depends upon interactions, and some species may even be favored by a harsh environment that impairs others, leading to potentially surprising community transitions as environments deteriorate. Here we combine theory and laboratory microcosms to predict how simple microbial communities will change under added mortality, controlled by varying dilution. We find that in a two-species coculture, increasing mortality favors the faster grower, confirming a theoretical prediction. Furthermore, if the slower grower dominates under low mortality, the outcome can reverse as mortality increases. We find that this tradeoff between growth and competitive ability is prevalent at low dilution, causing outcomes to shift dramatically as dilution increases, and that these two-species shifts propagate to simple multispecies communities. Our results argue that a bottom-up approach can provide insight into how communities change under stress. © 2019, The Author(s).
Yang, R. ; Garcia, D. S. ; Montaño, F. P. ; Da Silva, G. M. ; Zhao, M. ; Guerrero, I. J. ; Rosenberg, T. ; Chen, G. ; Plaschkes, I. ; Morin, S. ; et al. Complete Assembly Of The Genome Of An Acidovorax Citrulli Strain Reveals A Naturally Occurring Plasmid In This Species. Frontiers in Microbiology 2019, 10. Publisher's VersionAbstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli. Copyright © 2019 Yang, Santos Garcia, Pérez Montaño, da Silva, Zhao, Jiménez Guerrero, Rosenberg, Chen, Plaschkes, Morin, Walcott and Burdman.
Traore, S. M. ; Eckshtain-Levi, N. ; Miao, J. ; Castro Sparks, A. ; Wang, Z. ; Wang, K. ; Li, Q. ; Burdman, S. ; Walcott, R. ; Welbaum, G. E. ; et al. Nicotiana Species As Surrogate Host For Studying The Pathogenicity Of Acidovorax Citrulli, The Causal Agent Of Bacterial Fruit Blotch Of Cucurbits. Molecular Plant Pathology 2019, 20, 800-814. Publisher's VersionAbstract
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is one of the most important bacterial diseases of cucurbits worldwide. However, the mechanisms associated with A. citrulli pathogenicity and genetics of host resistance have not been extensively investigated. We idenitfied Nicotiana benthamiana and Nicotiana tabacum as surrogate hosts for studying A. citrulli pathogenicity and non-host resistance triggered by type III secreted (T3S) effectors. Two A. citrulli strains, M6 and AAC00-1, that represent the two major groups amongst A. citrulli populations, induced disease symptoms on N. benthamiana, but triggered a hypersensitive response (HR) on N. tabacum plants. Transient expression of 19 T3S effectors from A. citrulli in N. benthamiana leaves revealed that three effectors, Aave_1548, Aave_2708, and Aave_2166, trigger water-soaking-like cell death in N. benthamiana. Aave_1548 knockout mutants of M6 and AAC00-1 displayed reduced virulence on N. benthamiana and melon (Cucumis melo L.). Transient expression of Aave_1548 and Aave_2166 effectors triggered a non-host HR in N. tabacum, which was dependent on the functionality of the immune signalling component, NtSGT1. Hence, employing Nicotiana species as surrogate hosts for studying A. citrulli pathogenicity may help characterize the function of A. citrulli T3S effectors and facilitate the development of new strategies for BFB management. © 2019 The Authors. Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd
Cárdenas, P. D. ; Sonawane, P. D. ; Heinig, U. ; Jozwiak, A. ; Panda, S. ; Abebie, B. ; Kazachkova, Y. ; Pliner, M. ; Unger, T. ; Wolf, D. ; et al. Pathways To Defense Metabolites And Evading Fruit Bitterness In Genus Solanum Evolved Through 2-Oxoglutarate-Dependent Dioxygenases. Nature Communications 2019, 10. Publisher's VersionAbstract
The genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e. leptinines) serve as precursors for leptines that act as defenses against Colorado Potato Beetle (Leptinotarsa decemlineata Say), an important pest of potato worldwide. However, SGA hydroxylating enzymes remain unknown. Here, we discover that 2-OXOGLUTARATE-DEPENDENT-DIOXYGENASE (2-ODD) enzymes catalyze SGA-hydroxylation across various Solanum species. In contrast to cultivated potato, Solanum chacoense, a widespread wild potato species, has evolved a 2-ODD enzyme leading to the formation of leptinines. Furthermore, we find a related 2-ODD in tomato that catalyzes the hydroxylation of the bitter α-tomatine to hydroxytomatine, the first committed step in the chemical shift towards downstream ripening-associated non-bitter SGAs (e.g. esculeoside A). This 2-ODD enzyme prevents bitterness in ripe tomato fruit consumed today which otherwise would remain unpleasant in taste and more toxic. © 2019, The Author(s).
Jiménez-Guerrero, I. ; Pérez-Montaño, F. ; Da Silva, G. M. ; Wagner, N. ; Shkedy, D. ; Zhao, M. ; Pizarro, L. ; Bar, M. ; Walcott, R. ; Sessa, G. ; et al. Show Me Your Secret(Ed) Weapons: A Multifaceted Approach Reveals A Wide Arsenal Of Type Iii-Secreted Effectors In The Cucurbit Pathogenic Bacterium Acidovorax Citrulli And Novel Effectors In The Acidovorax Genus. Molecular Plant Pathology 2019. Publisher's VersionAbstract
The cucurbit pathogenic bacterium Acidovorax citrulli requires a functional type III secretion system (T3SS) for pathogenicity. In this bacterium, as with Xanthomonas and Ralstonia spp., an AraC-type transcriptional regulator, HrpX, regulates expression of genes encoding T3SS components and type III-secreted effectors (T3Es). The annotation of a sequenced A. citrulli strain revealed 11 T3E genes. Assuming that this could be an underestimation, we aimed to uncover the T3E arsenal of the A. citrulli model strain, M6. Thorough sequence analysis revealed 51 M6 genes whose products are similar to known T3Es. Furthermore, we combined machine learning and transcriptomics to identify novel T3Es. The machine-learning approach ranked all A. citrulli M6 genes according to their propensity to encode T3Es. RNA-Seq revealed differential gene expression between wild-type M6 and a mutant defective in HrpX: 159 and 28 genes showed significantly reduced and increased expression in the mutant relative to wild-type M6, respectively. Data combined from these approaches led to the identification of seven novel T3E candidates that were further validated using a T3SS-dependent translocation assay. These T3E genes encode hypothetical proteins that seem to be restricted to plant pathogenic Acidovorax species. Transient expression in Nicotiana benthamiana revealed that two of these T3Es localize to the cell nucleus and one interacts with the endoplasmic reticulum. This study places A. citrulli among the ‘richest’ bacterial pathogens in terms of T3E cargo. It also revealed novel T3Es that appear to be involved in the pathoadaptive evolution of plant pathogenic Acidovorax species. © 2019 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd
Pareek, M. ; Almog, Y. ; Bari, V. K. ; Hazkani-Covo, E. ; Onn, I. ; Covo, S. . Alternative Functional Rad21 Paralogs In Fusarium Oxysporum. Frontiers in Microbiology 2019, 10, JUN 2019 Article number 1370. Publisher's VersionAbstract
Cohesin, the sister chromatid cohesion complex, is an essential complex that ensures faithful sister chromatid segregation in eukaryotes. It also participates in DNA repair, transcription and maintenance of chromosome structure. Mitotic cohesin is composed of Smc1, Smc3, Scc3, and Rad21/Mcd1. The meiotic cohesin complex contains Rec8, a Rad21 paralog and not Rad21 itself. Very little is known about sister chromatid cohesion in fungal plant pathogens. Fusarium oxysporum is an important fungal plant pathogen without known sexual life cycle. Here, we describe that F. oxysporum encodes for three Rad21 paralogs; Rad21, Rec8, and the first alternative Rad21 paralog in the phylum of ascomycete. This last paralog is found only in several fungal plant pathogens from the Fusarium family and thus termed rad21nc (non-conserved). Conserved rad21 (rad21c), rad21nc, and rec8 genes are expressed in F. oxysporum although the expression of rad21c is much higher than the other paralogs. F. oxysporum strains deleted for the rad21nc or rec8 genes were analyzed for their role in fungal life cycle. δrad21nc and δrec8 single mutants were proficient in sporulation, conidia germination, hyphal growth and pathogenicity under optimal growth conditions. Interestingly, δrad21nc and δrec8 single mutants germinate less effectively than wild type (WT) strains under DNA replication and mitosis stresses. We provide here the first genetic analysis of alternative rad21nc and rec8 paralogs in filamentous fungi. Our results suggest that rad21nc and rec8 may have a unique role in cell cycle related functions of F. oxysporum. Copyright © 2019 Pareek, Almog, Bari, Hazkani-Covo, Onn and Covo.
Milo-Cochavi, S. ; Adar, S. ; Covo, S. . Developmentally Regulated Oscillations In The Expression Of Uv Repair Genes In A Soilborne Plant Pathogen Dictate Uv Repair Efficiency And Survival. mBio 2019, 10, e02623-19. Publisher's VersionAbstract
The ability to withstand UV damage shapes the ecology of microbes. While mechanisms of UV tolerance were extensively investigated in microorganisms regularly exposed to the sun, far less is known about UV repair of soilborne microorganisms. Fusarium oxysporum is a soilborne fungal plant pathogen that is resistant to UV light. We hypothesized that its UV repair capacity is induced to deal with irregular sun exposure. Unlike the SOS paradigm, our analysis revealed only sporadic increases and even decreases in UV repair gene expression following UVC irradiation or exposure to visible light. Strikingly, a major factor determining the expression of UV repair genes was the developmental status of the fungus. At the early stages of germination, the expression of photolyase increased while the expression of UV endonuclease decreased, and then the trend was reversed. These gene expression oscillations were dependent on cell cycle progression. Consequently, the contribution of photoreactivation to UV repair and survival was stronger at the beginning of germination than later when a filament was established. F. oxysporum germinates following cues from the host. Early on in germination, it is most vulnerable to UV; when the filament is established, the pathogen is protected from the sun because it is already within the host tissue. IMPORTANCE Fusarium oxysporum infects plants through the roots and therefore is not exposed to the sun regularly. However, the ability to survive sun exposure expands the distribution of the population. UV from the sun is toxic and mutagenic, and to survive sun exposure, fungi encode several DNA repair mechanisms. We found that Fusarium oxysporum has a gene expression program that activates photolyase at the first hours of germination when the pathogen is not established in the plant tissue. Later on, the expression of photolyase decreases, and the expression of a light-independent UV repair mechanism increases. We suggest a novel point of view to a very fundamental question of how soilborne microorganisms defend themselves against sudden UV exposure. © 2019 Milo-Cochavi et al.
Druseikis, M. ; Ben-Ari, J. ; Covo, S. . The Goldilocks Effect Of Respiration On Canavanine Tolerance In Saccharomyces Cerevisiae. Current Genetics 2019, 65, 1199-1215. Publisher's VersionAbstract
When glucose is available, Saccharomyces cerevisiae prefers fermentation to respiration. In fact, it can live without respiration at all. Here, we study the role of respiration in stress tolerance in yeast. We found that colony growth of respiratory-deficient yeast (petite) is greatly inhibited by canavanine, the toxic analog of arginine that causes proteotoxic stress. We found lower amounts of the amino acids involved in arginine biosynthesis in petites compared with WT. This finding may be explained by the fact that petite cells exposed to canavanine show reduction in the efficiency of targeting of proteins required for arginine biosynthesis. The retrograde (RTG) pathway signals mitochondrial stress. It positively controls production of arginine precursors. We show that canavanine abrogates RTG signaling especially in petite cells, and mutants in the RTG pathway are extremely sensitive to canavanine. We suggest that petite cells are naturally ineffective in production of some amino acids; combination of this fact with the effect of canavanine on the RTG pathway is the simplest explanation why petite cells are inhibited by canavanine. Surprisingly, we found that canavanine greatly inhibits colony formation when WT cells are forced to respire. Our research proposes a novel connection between respiration and proteotoxic stress. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Anand, G. ; Waiger, D. ; Vital, N. ; Maman, J. ; Ma, L. J. ; Covo, S. . How Does Fusarium Oxysporum Sense And Respond To Nicotinaldehyde, An Inhibitor Of The Nad+ Salvage Biosynthesis Pathway?. Frontiers in Microbiology 2019, 10. Publisher's VersionAbstract
Plant pathogenic fungi are a major threat to food security and impose a severe economic burden, thus there is a continuous need to develop new strategies to manage them. NAD+ is a co-factor in numerous enzymatic activities and determines the metabolic fate of the cell. Therefore, maintenance of NAD+ concentration is important for cellular viability. Consequently, the NAD+ biosynthetic pathway and redox homeostasis was suggested as a target for antifungal development. We aimed to study how Fusarium oxysporum senses and responds to nicotinaldehyde (NA), an inhibitor of Pnc1, a key enzyme in the salvage pathway of NAD+ biosynthesis. We were able to show that NA was inhibitory in high concentrations to several fungal plant pathogens, with much milder effects on tomato growth. Under low nutrient conditions NA reduced the total amounts of NAD+ in the fungal cell, a trend that was also observed in rich media, although without statistical significance. In low and high nutrient availability NA dramatically reduced the NAD+/NADH ratio. After exposure to NA, NADH levels were increased and NAD+ levels and the biomass were greatly reduced. Cells responded to NA by up-regulation of oxidoreductases, with hardly any up-regulation of the classic response to oxidative stress. Direct measurement of oxidative stress response showed that unlike formaldehyde and hydrogen peroxide, NA caused reductive rather than oxidative stress. Surprisingly, alcohol dehydrogenases were significantly up-regulated more than any other dehydrogenases, including aldehyde dehydrogenases. We propose that conidia of F. oxysporum efficiently detoxified the aldehyde group of NA by reducing NAD+ to NADH; the high concentrations of the latter provoked the expression of alcohol dehydrogenases that in yeast can act to reduce NADH and increase NAD+ amounts, respectively. Overall, the results suggest that targeting NAD+ biosynthesis pathway and redox homeostasis can be a potential approach to manage fungal plant pathogens. Many of the natural antifungal compounds produced by bio-control agents or even the natural biome are aldehydes, and thus the results presented here predict the possible response of Fusarium to wide sources of toxicity in the environment. © 2019 Frontiers Media S.A. All Rights Reserved.
Milo, S. ; Harari-Misgav, R. ; Hazkani-Covo, E. ; Covo, S. . Limited Dna Repair Gene Repertoire In Ascomycete Yeast Revealed By Comparative Genomics. Genome biology and evolution 2019, 11, 3409-3423. Publisher's VersionAbstract
Ascomycota is the largest phylogenetic group of fungi that includes species important to human health and wellbeing. DNA repair is important for fungal survival and genome evolution. Here, we describe a detailed comparative genomic analysis of DNA repair genes in Ascomycota. We determined the DNA repair gene repertoire in Taphrinomycotina, Saccharomycotina, Leotiomycetes, Sordariomycetes, Dothideomycetes, and Eurotiomycetes. The subphyla of yeasts, Saccharomycotina and Taphrinomycotina, have a smaller DNA repair gene repertoire comparing to Pezizomycotina. Some genes were absent from most, if not all, yeast species. To study the conservation of these genes in Pezizomycotina, we used the Gain Loss Mapping Engine algorithm that provides the expectations of gain or loss of genes given the tree topology. Genes that were absent from most of the species of Taphrinomycotina or Saccharomycotina showed lower conservation in Pezizomycotina. This suggests that the absence of some DNA repair in yeasts is not random; genes with a tendency to be lost in other classes are missing. We ranked the conservation of DNA repair genes in Ascomycota. We found that Rad51 and its paralogs were less conserved than other recombinational proteins, suggesting that there is a redundancy between Rad51 and its paralogs, at least in some species. Finally, based on the repertoire of UV repair genes, we found conditions that differentially kill the wine pathogen Brettanomyces bruxellensis and not Saccharomyces cerevisiae. In summary, our analysis provides testable hypotheses to the role of DNA repair proteins in the genome evolution of Ascomycota. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Cohen, R. ; Milo, S. ; Sharma, S. ; Savidor, A. ; Covo, S. . Ribonucleotide Reductase From Fusarium Oxysporum Does Not Respond To Dna Replication Stress. DNA Repair 2019, 83. Publisher's VersionAbstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed. © 2019 Elsevier B.V.
Vela-Corcía, D. ; Aditya Srivastava, D. ; Dafa-Berger, A. ; Rotem, N. ; Barda, O. ; Levy, M. . Mfs Transporter From Botrytis Cinerea Provides Tolerance To Glucosinolate-Breakdown Products And Is Required For Pathogenicity. 2019, 10, 2886. Publisher's VersionAbstract
Glucosinolates accumulate mainly in cruciferous plants and their hydrolysis-derived products play important roles in plant resistance against pathogens. The pathogen Botrytis cinerea has variable sensitivity to glucosinolates, but the mechanisms by which it responds to them are mostly unknown. Exposure of B. cinerea to glucosinolate-breakdown products induces expression of the Major Facilitator Superfamily transporter, mfsG, which functions in fungitoxic compound efflux. Inoculation of B. cinerea on wild-type Arabidopsis thaliana plants induces mfsG expression to higher levels than on glucosinolate-deficient A. thaliana mutants. A B. cinerea strain lacking functional mfsG transporter is deficient in efflux ability. It accumulates more isothiocyanates (ITCs) and is therefore more sensitive to this compound in vitro; it is also less virulent to glucosinolates-containing plants. Moreover, mfsG mediates ITC efflux in Saccharomyces cerevisiae cells, thereby conferring tolerance to ITCs in the yeast. These findings suggest that mfsG transporter is a virulence factor that increases tolerance to glucosinolates.
Herold, I. ; Kowbel, D. ; Delgado-Álvarez, D. L. ; Garduño-Rosales, M. ; Mouriño-Pérez, R. R. ; Yarden, O. . Transcriptional Profiling And Localization Of Gul-1, A Cot-1 Pathway Component, In Neurospora Crassa. Fungal Genetics and Biology 2019, 126, 1 - 11. Publisher's VersionAbstract
Impairment of theNeurospora crassaCOT-1 kinase results in defects in hyphal polarity. Some of these effects are partially suppressed by inactivation of gul-1 (encoding an mRNA-binding protein involved in translational regulation). Here, we report on the transcriptional profiling of cot-1 inactivation and demonstrate that gul-1 affects transcript abundance of multiple genes in the COT-1 pathway, including processes such as cell wall remodeling, nitrogen and amino acid metabolism. The GUL-1 protein itself was found to be distributed within the entire hyphal cell, along with a clear presence of aggregates that traffic within the cytoplasm. Live imaging of GUL-1-GFP demonstrated that GUL-1 transport is microtubule-dependent. Cellular stress, as imposed by the presence of the cell wall biosynthesis inhibitor Nikkomycin Z or by nitrogen limitation, resulted in a 2–3-fold increase of GUL-1 aggregate association with nuclei. Taken together, this study demonstrates that GUL-1 affects multiple processes, its function is stress-related and linked with cellular traffic and nuclear association.
Amend, A. ; Burgaud, G. ; Cunliffe, M. ; Edgcomb, V. P. ; Ettinger, C. L. ; Gutiérrez, M. H. ; Heitman, J. ; Hom, E. F. Y. ; Ianiri, G. ; Jones, A. C. ; et al. Fungi In The Marine Environment: Open Questions And Unsolved Problems. mBio 2019, 10, e01189-18. Publisher's VersionAbstract
Terrestrial fungi play critical roles in nutrient cycling and food webs and can shape macroorganism communities as parasites and mutualists. Although estimates for the number of fungal species on the planet range from 1.5 to over 5 million, likely fewer than 10% of fungi have been identified so far. To date, a relatively small percentage of described species are associated with marine environments, with ∼1,100 species retrieved exclusively from the marine environment. Nevertheless, fungi have been found in nearly every marine habitat explored, from the surface of the ocean to kilometers below ocean sediments. Fungi are hypothesized to contribute to phytoplankton population cycles and the biological carbon pump and are active in the chemistry of marine sediments. Many fungi have been identified as commensals or pathogens of marine animals (e.g., corals and sponges), plants, and algae. Despite their varied roles, remarkably little is known about the diversity of this major branch of eukaryotic life in marine ecosystems or their ecological functions. This perspective emerges from a Marine Fungi Workshop held in May 2018 at the Marine Biological Laboratory in Woods Hole, MA. We present the state of knowledge as well as the multitude of open questions regarding the diversity and function of fungi in the marine biosphere and geochemical cycles.
Wang, Z. ; Miguel-Rojas, C. ; Lopez-Giraldez, F. ; Yarden, O. ; Trail, F. ; Townsend, J. P. . Metabolism And Development During Conidial Germination In Response To A Carbon-Nitrogen-Rich Synthetic Or A Natural Source Of Nutrition In&Nbsp; Neurospora Crassa&Nbsp;. mBio 2019, 10, e00192-19. Publisher's VersionAbstract
Fungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription of Neurospora crassa germinating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical of N. crassa colonies.IMPORTANCE One of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.
Calderón, C. E. ; Rotem, N. ; Harris, R. ; Vela-Corcía, D. ; Levy, M. . Pseudozyma Aphidis Activates Reactive Oxygen Species Production, Programmed Cell Death And Morphological Alterations In The Necrotrophic Fungus Botrytis Cinerea. Molecular Plant Pathology 2019, 20, 562 - 574. Publisher's VersionAbstract
Summary Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied. In previous work, we have established that the epiphytic yeast Pseudozyma aphidis inhibits Botrytis cinerea through induced resistance and antibiosis. Here, we demonstrate that P. aphidis adheres to B. cinerea hyphae and competes with them for nutrients. We further show that the secreted antifungal compounds activate the production of reactive oxygen species and programmed cell death in B. cinerea mycelium. Finally, P. aphidis and its secreted compounds negatively affect B. cinerea hyphae, leading to morphological alterations, including hyphal curliness, vacuolization and branching, which presumably affects the colonization ability and infectivity of B. cinerea. This study demonstrates additional modes of action for P. aphidis and its antifungal compounds against the plant pathogen B. cinerea.
Habtom, H. ; Pasternak, Z. ; Matan, O. ; Azulay, C. ; Gafny, R. ; Jurkevitch, E. . Applying Microbial Biogeography In Soil Forensics. Forensic Science International: Genetics 2019, 38, 195 - 203. Publisher's VersionAbstract
The ubiquity, heterogeneity and transferability of soil makes it useful as evidence in criminal investigations, especially using new methods that survey the microbial DNA it contains. However, to be used effectively and reliably, more needs to be learned about the natural distribution patterns of microbial communities in soil. In this study we examine these patterns in detail, at local to regional scales (2 m–260 km), across an environmental gradient in three different soil types. Geographic location was found to be more important than soil type in determining the microbial community composition: communities from the same site but different soil types, although significantly different from each other, were still much more similar to each other than were communities from the same soil type but from different sites. At a local scale (25–1000 m), distance-decay relationships were observed in all soil types: the farther apart two soil communities were located, even in the same soil type, the more they differed. At regional-scale distances (1–260 km), differences between communities did not increase with increased geographic distance between them, and the dominant factor determining the community profile was the physico-chemical environment, most notably annual precipitation (R2 = 0.69), soil sodium (R2 = 0.49) and soil ammonium (R2 = 0.47) levels. We introduce a likelihood-ratio framework for quantitative evaluation of soil microbial DNA profile evidence in casework. In conclusion, these profiles, along with detailed knowledge of natural soil microbial biogeography, provide valuable forensic information on soil sample comparison and allow the determination of approximate source location on large (hundreds of km) spatial scales. Moreover, at small spatial scales it may enable pinpointing the source location of a sample to within at least 25 m, regardless of soil type and environmental conditions.