Publications by Year

<embed>

Publications by Authors

5efb8d67c70d1612406abcdcfac78a61

Recent Publications

Contact Us

Department of Plant Pathology and Microbiology
The Robert H. Smith Faculty of Agriculture, Food & Environment
The Hebrew University of Jerusalem

Herzl 229
Rehovot 7610001 
ISRAEL

Tel: 08-9489219
Fax: 08-9466794
rakefetk@savion.huji.ac.il

Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis

Citation:

Gutierrez, R. ; Ram, Y. ; Berman, J. ; Carstens Marques de Sousa, K. ; Nachum-Biala, Y. ; Britzi, M. ; Elad, D. ; Glaser, G. ; Covo, S. ; Harrus, S. Adaptive Resistance Mutations at Suprainhibitory Concentrations Independent of SOS Mutagenesis. MOLECULAR BIOLOGY AND EVOLUTION 2021, 38, 4095-4115.

Date Published:

OCT

Abstract:

Emergence of resistant bacteria during antimicrobial treatment is one of the most critical and universal health threats. It is known that several stress-induced mutagenesis and heteroresistance mechanisms can enhance microbial adaptation to antibiotics. Here, we demonstrate that the pathogen Bartonella can undergo stress-induced mutagenesis despite the fact it lacks error-prone polymerases, the rpoS gene and functional UV-induced mutagenesis. We demonstrate that Bartonella acquire de novo single mutations during rifampicin exposure at suprainhibitory concentrations at a much higher rate than expected from spontaneous fluctuations. This is while exhibiting a minimal heteroresistance capacity. The emerged resistant mutants acquired a single rpoB mutation, whereas no other mutations were found in their whole genome. Interestingly, the emergence of resistance in Bartonella occurred only during gradual exposure to the antibiotic, indicating that Bartonella sense and react to the changing environment. Using a mathematical model, we demonstrated that, to reproduce the experimental results, mutation rates should be transiently increased over 1,000-folds, and a larger population size or greater heteroresistance capacity is required. RNA expression analysis suggests that the increased mutation rate is due to downregulation of key DNA repair genes (mutS, mutY, and recA), associated with DNA breaks caused by massive prophage inductions. These results provide new evidence of the hazard of antibiotic overuse in medicine and agriculture.