check
Altering N2O emissions by manipulating wheat root bacterial community | Plant Pathology and Microbiology

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Plant Pathology and Microbiology
The Robert H. Smith Faculty of Agriculture, Food & Environment
The Hebrew University of Jerusalem

Herzl 229
Rehovot 7610001 
ISRAEL

Tel: 08-9489219
Fax: 08-9466794
Email: maayanms@savion.huji.ac.il

Altering N2O emissions by manipulating wheat root bacterial community

Citation:

Usyskin-Tonne, A. ; Hadar, Y. ; Minz, D. . Altering N2O Emissions By Manipulating Wheat Root Bacterial Community. Scientific Reports 2019, 9, 7613.

Date Published:

2019

Abstract:

Nitrous oxide (N2O) is a greenhouse gas and a potent ozone-depleting substance in the stratosphere. Agricultural soils are one of the main global sources of N2O emissions, particularly from cereal fields due to their high areal coverage. The aim of this study was to isolate N2O-reducing bacteria able to mitigate N2O emissions from the soil after inoculation. We isolated several bacteria from wheat roots that were capable of N2O reduction in vitro and studied their genetic potential and activity under different environmental conditions. Three of these isolates- all carrying the nitrous oxide reductase-encoding clade I nosZ, able to reduce N2O in vitro, and efficient colonizers of wheat roots- presented different N2O-reduction strategies when growing in the root zone, possibly due to the different conditions in situ and their metabolic preferences. Each isolate seemed to prefer to operate at different altered oxygen levels. Isolate AU243 (related to Agrobacterium/Rhizobium) could reduce both nitrate and N2O and operated better at lower oxygen levels. Isolate AU14 (related to Alcaligenes faecalis), lacking nitrate reductases, operated better under less anoxic conditions. Isolate NT128 (related to Pseudomonas stutzeri) caused slightly increased N2O emissions under both anoxic and ambient conditions. These results therefore emphasize the importance of a deep understanding of soil–plant–microbe interactions when environmental application is being considered.

Publisher's Version

Last updated on 07/11/2019