check
To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators | Plant Pathology and Microbiology

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Plant Pathology and Microbiology
The Robert H. Smith Faculty of Agriculture, Food & Environment
The Hebrew University of Jerusalem

Herzl 229
Rehovot 7610001 
ISRAEL

Tel: 08-9489219
Fax: 08-9466794
Email: maayanms@savion.huji.ac.il

To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators

Citation:

Sathyamoorthy, R. ; Kushmaro, Y. ; Rotem, O. ; Matan, O. ; Kadouri, D. E. ; Huppert, A. ; Jurkevitch, E. . To Hunt Or To Rest: Prey Depletion Induces A Novel Starvation Survival Strategy In Bacterial Predators. ISME JOURNAL 2021, 15, 109-123.

Date Published:

JAN

Abstract:

The small size of bacterial cells necessitates rapid adaption to sudden environmental changes. InBdellovibrio bacteriovorus, an obligate predator of bacteria common in oligotrophic environments, the non-replicative, highly motile attack phase (AP) cell must invade a prey to ensure replication. AP cells swim fast and respire at high rates, rapidly consuming their own contents. How the predator survives in the absence of prey is unknown. We show that starvation for prey significantly alters swimming patterns and causes exponential decay in prey-searching cells over hours, until population-wide swim-arrest. Swim-arrest is accompanied by changes in energy metabolism, enabling rapid swim-reactivation upon introduction of prey or nutrients, and a sweeping change in gene expression and gene regulation that largely differs from those of the paradigmatic stationary phase. Swim-arrest is costly as it imposes a fitness penalty in the form of delayed growth. We track the control of the swim arrest-reactivation process to cyclic-di-GMP (CdG) effectors, including two motility brakes. CRISPRi transcriptional inactivation, and in situ localization of the brakes to the cell pole, demonstrated their essential role for effective survival under prey-induced starvation. Thus, obligate predators evolved a unique CdG-controlled survival strategy, enabling them to sustain their uncommon lifestyle under fluctuating prey supply.