check
Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa | Plant Pathology and Microbiology

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Plant Pathology and Microbiology
The Robert H. Smith Faculty of Agriculture, Food & Environment
The Hebrew University of Jerusalem

Herzl 229
Rehovot 7610001 
ISRAEL

Tel: 08-9489219
Fax: 08-9466794
Email: maayanms@savion.huji.ac.il

Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa

Abstract:

Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes—a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa—as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5, poi-2, and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to roles that SMCs may play in the regulatory switches controlling mode of development, as well as the ecological associations of those developmental stages that may influence expression of SMCs. IMPORTANCE Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. However, SM clusters (SMCs) that have been predicted by comparative genomics alone have typically been poorly defined and insufficiently functionally annotated. Therefore, we have investigated coordinate expression in SMCs in the model system N. crassa, and our results suggest that SMCs respond to environmental signals and to stress that are associated with development. This study examined SMC regulation at the level of RNA to integrate observations and knowledge of these genes in various growth and development conditions, supporting combining comparative genomics and inclusive transcriptomics to improve computational annotation of SMCs. Our findings call for detailed study of the function of SMCs during the asexual-sexual switch, a key, often-overlooked developmental stage.

Website