check
Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem | Plant Pathology and Microbiology

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Plant Pathology and Microbiology
The Robert H. Smith Faculty of Agriculture, Food & Environment
The Hebrew University of Jerusalem

Herzl 229
Rehovot 7610001 
ISRAEL

Tel: 08-9489219
Fax: 08-9466794
Email: maayanms@savion.huji.ac.il

Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem

Citation:

Preheim, S. P. ; Olesen, S. W. ; Spencer, S. J. ; Materna, A. ; Varadharajan, C. ; Blackburn, M. ; Friedman, J. ; Rodríguez, J. ; Hemond, H. ; Alm, E. J. . Surveys, Simulation And Single-Cell Assays Relate Function And Phylogeny In A Lake Ecosystem. 2016, 1, 16130.

Date Published:

2016

Abstract:

Much remains unknown about what drives microbial community structure and diversity. Highly structured environments might offer clues. For example, it may be possible to identify metabolically similar species as groups of organisms that correlate spatially with the geochemical processes they carry out. Here, we use a 16S ribosomal RNA gene survey in a lake that has chemical gradients across its depth to identify groups of spatially correlated but phylogenetically diverse organisms. Some groups had distributions across depth that aligned with the distributions of metabolic processes predicted by a biogeochemical model, suggesting that these groups performed biogeochemical functions. A single-cell genetic assay showed, however, that the groups associated with one biogeochemical process, sulfate reduction, contained only a few organisms that have the genes required to reduce sulfate. These results raise the possibility that some of these spatially correlated groups are consortia of phylogenetically diverse and metabolically different microbes that cooperate to carry out geochemical functions.

Website