check
Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging | Plant Pathology and Microbiology

Publications by Year

<embed>
Copy and paste this code to your website.

Publications by Authors

Recent Publications

Contact Us

Department of Plant Pathology and Microbiology
The Robert H. Smith Faculty of Agriculture, Food & Environment
The Hebrew University of Jerusalem

Herzl 229
Rehovot 7610001 
ISRAEL

Tel: 08-9489219
Fax: 08-9466794
Email: maayanms@savion.huji.ac.il

Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging

Citation:

Steinberg, S. ; Grinberg, M. ; Beitelman, M. ; Peixoto, J. ; Orevi, T. ; Kashtan, N. . Two-Way Microscale Interactions Between Immigrant Bacteria And Plant Leaf Microbiota As Revealed By Live Imaging. ISME JOURNAL 2021, 15, 409-420.

Date Published:

FEB

Abstract:

The phyllosphere - the aerial parts of plants - is an important microbial habitat that is home to diverse microbial communities. The spatial organization of bacterial cells on leaf surfaces is non-random, and correlates with leaf microscopic features. Yet, the role of microscale interactions between bacterial cells therein is not well understood. Here, we ask how interactions between immigrant bacteria and resident microbiota affect the spatial organization of the combined community. By means of live imaging in a simplified in vitro system, we studied the spatial organization, at the micrometer scale, of the biocontrol agentPseudomonas fluorescensA506 and the plant pathogenP. syringaeB728a when introduced to pear and bean leaf microbiota (the corresponding native plants of these strains). We found significant co-localization of immigrant and resident microbial cells at distances of a few micrometers, for both strains. Interestingly, this co-localization was in part due to preferential attachment of microbiota cells near newly formedP. fluorescensaggregates. Our results indicate that two-way immigrant bacteria - resident microbiota interactions affect the microscale spatial organization of leaf microbiota, and possibly that of other surface-related microbial communities.